Heating of the Low - Latitude Solar Wind by Dissipationof Turbulent Magnetic
نویسندگان
چکیده
We test a theory presented previously to account for the turbulent transport of magnetic uctuation energy in the solar wind and the related dissipation and heating of the ambient ion population. This theory accounts for the injection of magnetic energy through the damping of large-scale ow gradients such as wind shear and compression, and incorporates the injection of magnetic energy due to wave excitation by interstellar pickup ions. The theory assumes quasi-2D spectral transport of the uctuation energy and subsequent dissipation that heats the thermal protons. We compare the predictions of this theory with Voyager 2 and Pioneer 11 observations of magnetic uctuation energy, magnetic correlation lengths, and ambient proton temperatures. Near-Earth Omnitape observations are used to adjust for solar variability and the possibility that high-latitude eeects could mask possible radial dependences is considered. We nd abundant evidence for in situ heating of the protons, which we quantify, and show that the observed magnetic energy is consistent with the ion temperatures.
منابع مشابه
Heating of the Low-Latitude Solar Wind by Dissipation of Turbulent Magnetic Fluctuations
We test a theory presented previously to account for the turbulent transport of magnetic uctuation energy in the solar wind and the related dissipation and heating of the ambient ion population. This theory accounts for the injection of magnetic energy through the damping of large-scale ow gradients such as wind shear and compression, and incorporates the injection of magnetic energy due to wav...
متن کاملTurbulence in the Sub-alfvénic Solar Wind Driven by Reflection of Low-frequency Alfvén Waves
We study the formation and evolution of a turbulent spectrum of Alfvén waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvénic critical point. The background solar wind is assigned and 2D shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature ...
متن کاملConstraining Low-frequency Alfvénic Turbulence in the Solar Wind Using Density Fluctuation Measurements
One proposed mechanism for heating the solar wind, from close to the sun to beyond ∼ 10 AU, invokes lowfrequency, oblique, Alfvén-wave turbulence. Because small-scale oblique Alfvén waves (kinetic Alfvén waves) are compressive, the measured density fluctuations in the solar wind place an upper limit on the amplitude of kinetic Alfvén waves and hence an upper limit on the rate at which the solar...
متن کاملThe Turbulent Magnetohydrodynamic Cascade: Applications of Third-Moment Theory to the Solar Wind at 1 AU
Velocity and magnetic field fluctuations in the solar wind show evidence that non-linear turbulent dynamics are present in the interplanetary medium. The cascade of energy created by these turbulent processes may provide a mechanism for in situ heating of the solar wind plasma. We perform three studies analyzing the turbulent energy cascade at 1AU using 10 years of data from the Advanced Compos...
متن کاملSelf-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence
We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfvén waves that have been partially reflected, then damped by anis...
متن کامل